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We show that for arbitrary linearly ordered set (X, ≤) any bounded family of (not 
necessarily, continuous) real valued functions on X with bounded total variation 
does not contain independent sequences. We obtain generalized Helly’s sequential 
compactness type theorems. One of the theorems asserts that for every compact 
metric space (Y, d) the compact space BVr(X, Y ) of all functions X → Y with 
variation ≤ r is sequentially compact in the pointwise topology. Another Helly 
type theorem shows that the compact space M+(X, Y ) of all order preserving maps 
X → Y is sequentially compact where Y is a compact metrizable partially ordered 
space in the sense of Nachbin.
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1. Introduction

Recall that the Helly’s compact space M+([0, 1], [0, 1]) of all increasing selfmaps on the closed unit interval 
[0, 1] is sequentially compact in the pointwise topology. A slightly more general form of this result is the 
following classical result of Helly (see [9] and also [25]).

Theorem 1.1 (Helly’s selection theorem). For every sequence of functions from the set BVr([a, b], [c, d]) of 
all real functions [a, b] → [c, d] with variation ≤ r there exists a pointwise convergent subsequence. That is, 
BVr([a, b], [c, d]) is sequentially compact.
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There are several generalized forms of Helly’s theorem in the literature. Among other relevant refer-
ences we mention [8,1,4]. In Section 5 we give two generalized versions of Helly’s theorem for functions 
defined on abstract linearly ordered sets. Namely, Theorems 5.3 and 5.5 which are partial generalizations of 
Fuchino–Plewik [8, Theorem 7] (full generalization under s = ℵ1 where s denotes the splitting number [8], 
in particular this is the case under the Continuum Hypothesis) and Belov–Chistyakov [1, Theorem 1].

One of the main ideas in our approach is the independence for families of real valued functions on a 
set X. This concept plays a major role in several research lines. For example, in Rosenthal’s l1-theorem, 
in Bourgain–Fremlin–Talagrand dichotomy and related topics [26,3,29,5]. A relatively new direction when 
the (non)independence of families becomes very important is dynamical systems theory. Especially, tame 
systems and tame coding sequences. See [12,13,11,15–17] and references therein.

We give a sufficient condition under which a given bounded family F of real functions on a linearly 
ordered set X is tame, i.e., does not contain any independent sequence. We show in Theorem 4.5 that 
this happens for example when F has a bounded total variation. This is easy in the particular case when 
every member f ∈ F is an order preserving function (Example 2.4.6). Another sufficient condition for the 
tameness of F (for arbitrary set X) is the Grothendieck’s double limit property (Example 2.4.3).

We use a topological characterization of independent families of continuous functions on compact spaces, 
Theorem 2.3. It is a reformulation of a result presented in van Dulst’s book [5, Theorem 3.11] which can be 
traced back to results of Rosenthal [26,27] and Bourgain–Fremlin–Talagrand [3,29]. It asserts that a family F
of bounded continuous functions on a compact space is tame iff each sequence in F has a pointwise convergent 
subsequence in RX iff the pointwise closure cls (F ) consists of the functions with the point of continuity 
property. It is equivalent to say that each member of cls (F ) is a fragmented function (Definition 2.1). This 
motivates Theorem 3.5: every order preserving function on every linearly ordered set is fragmented. Next 
we deal with functions of bounded variation defined on abstract ordered spaces. By an analog of Jordan’s 
decomposition (Lemma 4.2.3) every function of a bounded variation is fragmented. Using results of Nachbin 
on ordered compactifications we give a representation Theorem 3.6 which, as Theorem 3.5, hopefully, has 
an independent interest.

Some dynamical applications of Theorems 3.5 and 4.5 are presented in [16,17], where we show that 
several important coding functions (for example, multidimensional Sturmian bisequences and finite coloring 
functions on the circle) on dynamical G-systems X lead to functions f : X → R the G-orbit fG of which 
are tame families.

2. Fragmentability and independence

By cls we denote the closure operator. We use the usual definition of uniform structures using the 
entourages. We allow not necessarily Hausdorff uniform spaces. So, involving, in particular, the uniform 
structures induced by a pseudometric. “Compact” will mean “compact and Hausdorff”. Recall that any 
compact space X admits a unique compatible uniform structure. Namely the set of all neighborhoods of 
the diagonal in X ×X.

2.1. Fragmented maps

Definition 2.1. [18] Let (X, τ) be a topological space and (Y, μ) a uniform space. We say that a function 
f : X → Y is fragmented if for every nonempty subset A of X and every entourage ε ∈ μ there exists an open 
subset O of X such that O ∩ A is nonempty and the set f(O ∩ A) is ε-small in Y . Notation: f ∈ F(X, Y ), 
whenever the uniformity μ is understood. If Y = R then we write simply F(X).

A function f : X → Y has the point of continuity property if for every closed nonempty subset A of X
the restriction f |A : A → Y has a point of continuity. For compact X and (pseudo)metric space (Y, d) it is 
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equivalent to the fragmentability. If X is Polish and (Y, d) is a separable metric space then f : X → Y is 
fragmented iff f is a Baire class 1 function (i.e., the inverse image under f of every open set is Fσ) [10,14].

The topological concept of fragmentability comes from Banach space theory. More facts about frag-
mentability see for example in [24,19,18,22,21,14,16].

2.2. Independent sequences of functions

Let fn : X → R be a uniformly bounded sequence of functions on a set X. Following Rosenthal [26] we 
say that this sequence is an l1-sequence on X if there exists a real constant a > 0 such that for all n ∈ N

and choices of real scalars c1, . . . , cn we have

a ·
n∑

i=1
|ci| ≤ ||

n∑

i=1
cifi||∞.

A Banach space V is said to be Rosenthal if it does not contain an isomorphic copy of l1, or equivalently, 
if V does not contain a sequence which is equivalent to an l1-sequence.

A sequence fn of real valued functions on a set X is said to be independent (see [26,29,5]) if there exist 
real numbers a < b such that

⋂

n∈P

f−1
n (−∞, a) ∩

⋂

n∈M

f−1
n (b,∞) �= ∅

for all finite disjoint subsets P, M of N.

Definition 2.2. Let us say that a family F of real valued (not necessarily, continuous) functions on a set X
is tame if F does not contain an independent sequence.

Such families play a major role in the theory of tame dynamical systems. See, for example, [12,11,14–16].
The following useful result is a reformulation of some known results. It is based on results of Rosenthal 

[26], Talagrand [29, Theorem 14.1.7] and van Dulst [5]. See also [14, Sect. 4].

Theorem 2.3. [5, Theorem 3.11] Let X be a compact space and F ⊂ C(X) a bounded subset. The following 
conditions are equivalent:

(1) F does not contain an l1-sequence.
(2) F is a tame family (does not contain an independent sequence).
(3) Each sequence in F has a pointwise convergent subsequence in RX .
(4) The pointwise closure cls (F ) of F in RX consists of fragmented maps, that is, cls (F ) ⊂ F(X).

Let X be a topological space and F ⊂ l∞(X) be a norm bounded family. Recall that F has Grothendieck’s 
Double Limit Property (DLP) on X if for every sequence {fn} ⊂ F and every sequence {xm} ⊂ X the limits

lim
n

lim
m

fn(xm) and lim
m

lim
n

fn(xm)

are equal whenever they both exist.

Examples 2.4.

(1) A Banach space V is Rosenthal iff every bounded subset F ⊂ V is tame (as a family of functions) on 
every bounded subset X ⊂ V ∗ of the dual V ∗.
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(2) A Banach space is reflexive iff every bounded subset F ⊂ V has DLP on every bounded subset X ⊂ V ∗.
(3) ((DLP) ⇒ Tame) Let F be a bounded family of real valued (not necessarily, continuous) functions on 

a set X such that F has DLP. Then F is tame.
(4) The family Homeo [0, 1], of all autohomeomorphisms of [0, 1], is tame (but not with DLP on [0, 1]).
(5) The sequence of projections on the Cantor cube

{πm : {0, 1}N → {0, 1}}m∈N

and the sequence of Rademacher functions

rn : [0, 1] → R, rn(x) := sgn(sin(2nπx))

both are independent (hence, nontame).
(6) Let (X, ≤) be a linearly ordered set. Then any family F of order preserving real functions is tame. 

Moreover there is no independent pair of functions in F .

Proof. (1) Apply Theorem 2.3 assuming X = BV ∗ is the weak∗ compact unit ball of the dual V ∗.
(2) Use Grothendieck’s double limit characterization of weak compactness (see for example [2, Theorem 

A5]) and a well known fact that a Banach space V is reflexive iff its closed unit ball BV is weakly compact.
(3) One may suppose that X is a dense subset of a compact space Y and F ⊂ C(Y ). Indeed, take for 

example the maximal compactification Y := βX of the discrete copy of X. Since F has DLP on X we may 
apply [2, Appendix A4] which yields that the pointwise closure cls (F ) of F in RY is a subset of C(Y ). Now 
Theorem 2.3 ((4) ⇒ (2)) shows that F is tame on Y and hence also on X ⊂ Y .

(4) Every homeomorphism [0, 1] → [0, 1] is either order preserving or order reversing. Now, combine 
Helly’s Theorem 1.1 and Theorem 2.3 ((3) ⇒ (2)).

(5) These two examples are well known [5].
(6) Assuming that f1, f2 ∈ F is an independent pair there exist a < b and x, y ∈ X such that x ∈

f−1
1 (−∞, a) ∩ f−1

2 (b, ∞) and y ∈ f−1
2 (−∞, a) ∩ f−1

1 (b, ∞). Then f1(x) < f1(y) and f2(y) < f2(x). Since f1

and f2 are order preserving and X is linearly ordered we obtain that x < y and y < x, a contradiction. �
Note that in (1) and (2) the converse statements are true; as it follows from results of [16] every tame (with 

DLP) family F on X can be represented, in a sense, on a Rosenthal (resp., reflexive) Banach space. Namely, 
there exist: a Rosenthal (resp., reflexive) space V , a pair (ν, α) of bounded maps ν : F → V, α : X → V ∗

such that

f(x) = 〈ν(f), α(x)〉 ∀ f ∈ F, ∀ x ∈ X.

In other words, the following diagram commutes

F ×X

ν α

R

id

V × V ∗
R

3. Order preserving maps

Partial order will mean a reflexive, antisymmetric and transitive relation.
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Definition 3.1. (Nachbin [23]) Let (X, τ) be a topological space and ≤ a partial order on the set X. The 
triple (X, τ, ≤) is said to be a compact (partially) ordered space if (X, τ) is a compact space and the graph 
of the relation ≤ is τ -closed in X ×X.

Recall that for every linearly ordered set (X, ≤) the rays (a, →), (←, b) with a, b ∈ X form a subbase 
for the standard interval topology τ≤ on X. The triple (X, τ≤, ≤) is said to be a linearly ordered topological 
space (LOTS). Sometimes we write just (X, ≤), or even simply X, where no ambiguity can occur.

Lemma 3.2. Let (X, ≤) be a LOTS. Then for any two distinct points u1 < u2 in X there exist disjoint 
τ≤-open neighborhoods O1 and O2 in X of u1 and u2 respectively such that O1 < O2, meaning that x < y

for every (y, x) ∈ O2 ×O1. In particular, the graph of ≤ is closed in (X, τ≤) × (X, τ≤).

Proof. If the interval (u1, u2) is empty then take O1 := (←, u2) and O2 := (u1, →). If (u1, u2) is nonempty 
then choose t ∈ (u1, u2) and define O1 := (←, t), O2 := (t, →). �
Corollary 3.3. Any compact LOTS is a compact ordered space in the sense of Nachbin (Definition 3.1). 
Conversely, for every compact ordered space (X, τ, ≤), where ≤ is a linear order, necessarily τ is the interval 
topology of ≤.

Proof. The first part is obvious by Lemma 3.2. For the second part observe that the τ -closedness of the 
linear order ≤ in X×X implies that the subbase intervals (a, →), (←, b) (with a, b ∈ X) are τ -open. Whence, 
τ≤ ⊆ τ . Since τ≤ is a Hausdorff topology and τ is a compact topology we can conclude that τ≤ = τ . �

A map f : (X, ≤) → (Y, ≤) between two (partially) ordered sets is said to be order preserving or increasing
if x ≤ x′ implies f(x) ≤ f(x′) for every x, x′ ∈ X.

Let (X, ≤) and (Y, ≤) be partially ordered sets. Denote by M+(X, Y ) the set of all order preserving maps 
X → Y . For Y = R we use the symbol M+(X, ≤) or M+(X). Since the order of R is closed in R2, we 
have cls (M+(X)) = M+(X). That is, M+(X) is pointwise closed in RX . If (Y, τ, ≤) is a compact partially 
ordered space then M+(X, Y ) is pointwise closed in Y X . For compact partially ordered spaces X, Y we 
define also C+(X, Y ) the set of all continuous and increasing maps X → Y .

Fundamental results of Nachbin [23, p. 48 and 113] imply the following

Lemma 3.4. (Nachbin [23]) Let (Y, τ, ≤) be a compact partially ordered space (Definition 3.1). Then the set 
C+(Y, [0, 1]) separates points of Y .

The following Theorem is a slightly generalized version of a recent result from [16]. Its prototype is a well 
known fact that every monotonic function [a, b] → R is a Baire 1 function.

Theorem 3.5. [16] Let (X, ≤) be a linearly ordered set and (Y, τ, ≤) a compact partially ordered space. Then 
every order preserving map f : X → (Y, μ) is fragmented, where μ is the unique compatible uniformity on 
the compact space Y and X carries the interval topology.

Proof. First note that the question can be reduced to the case of Y := [0, 1]. Indeed, Lemma 3.4 implies 
that there exists a point separating family {qi : Y → [0, 1]}i∈I of order preserving continuous maps. Clearly 
the composition of two order preserving maps is order preserving. Now by [14, Lemma 2.3.3] it is enough 
to show that every map qi ◦ f is fragmented. So we can assume that our order preserving function is of the 
form f : X → Y = [0, 1]. We have to show that f is fragmented.

Now observe that one may assume that X is compact. Indeed, for every LOTS X (with its interval topol-
ogy) there exists a compact LOTS Z and an embedding of topological spaces and ordered sets i : X ↪→ Z

(see for example, [6, Exercise 3.12.3]). Now define
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F : Z → [0, 1], F (z) = sup
x≤z

f(x)

for every z ∈ Z. Then F is a well defined increasing function on Z which extends f : X → [0, 1]. Note 
that the fragmentability is a hereditary property. The fragmentability of F : Z → [0, 1] guarantees the 
fragmentability of f : X → [0, 1]. So, below we assume that X is compact.

Assume the contrary that f : X → Y = [0, 1] is not fragmented. Then by [5, Lemma 3.7] (using that X
is compact) there exists a closed subset K ⊂ X and a < b in R such that

K ∩ {x ∈ X : f(x) ≤ a}, K ∩ {x ∈ X : b ≤ f(x)}

are both dense in K.
Choose arbitrarily two distinct points k1 < k2 in K. By Lemma 3.2 one can choose disjoint open neigh-

borhoods O1 and O2 in X of k1 and k2 respectively such that O1 < O2.
By our assumption we can choose x ∈ O1 ∩ K such that b ≤ f(x). Similarly, there exists y ∈ O2 ∩ K

such that f(y) ≤ a. Since a < b we obtain f(y) < f(x). On the other hand, x < y (because O1 < O2), 
contradicting our assumption that f is order preserving. �

The following result is an adaptation of some well known facts from the theory of ordered com-
pactifications (see for example Fedorchuk [7], or Kaufman [20]). We consider not necessarily continuous 
“compactification” ν : X → Y of a linearly ordered set X as an increasing map into a compact LOTS Y . 
This is equivalent to saying that we consider order compactifications X → Y of the discrete copy of X (we 
do not require topological embeddability for compactification maps).

Theorem 3.6 (Representation theorem). Let (X, ≤) be a linearly ordered set. For any family Γ := {fi : X →
[c, d]}i∈I (with c < d) of order preserving (not necessarily continuous) functions there exist: a compact LOTS 
(Y, ≤), an order preserving dense injection ν : X ↪→ Y and a family {Fi : Y → [c, d]}i∈I of τ≤-continuous 
increasing functions such that fi = Fi ◦ ν ∀i ∈ I.

Proof. For simplicity we assume that [c, d] = [0, 1]. Without restriction of generality one may assume that 
Γ = M+(X, [0, 1]). So, Γ separates points of X. Indeed, for every a < b in X consider the characteristic 
function χA : X → [0, 1] of A := {x : b ≤ x}. Then χA ∈ M+(X, [0, 1]) and separates a and b. Consider the 
diagonal map

ν : X → Y ⊂ [0, 1]I , ν(x)(i) = fi(x).

Since Γ separates the points, ν is an injection. We will identify X and the dense subset ν(X) in the 
compactum Y := cls (ν(X)). Let us show that Y admits a naturally defined linear order which extends the 
order of ν(X) = X. Consider the natural partial order γ on [0, 1]I

u ≤ v ⇔ ui ≤ vi ∀i ∈ I.

It is easy to see that γ is a partial order. Clearly, it induces the original order on X ⊂ [0, 1]I . Indeed, if 
x ≤ x′ in X then xi = fi(x) ≤ x′

i = fi(x′) for every i ∈ I because each fi is increasing. So, we obtain 
that (x, x′) ∈ γ. Conversely, if (x, x′) ∈ γ and x �= x′ then fi(x) ≤ fi(x′) for every i ∈ I. Since Γ (by our 
assumption) separates the points we obtain that fi(x) < fi(x′) for some i ∈ I. Since the order in X is linear 
and fi is increasing we necessarily have x < x′.

Claim 1. γ ⊂ [0, 1]I × [0, 1]I is a closed partial order on [0, 1]I .
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We show that γ is closed. Let (u, v) /∈ γ. By definition this means that there exists i ∈ I such that 
ui > vi in [0, 1]. Choose disjoint open (in [0, 1]) intervals U and V of ui and vi. Consider the basic open 
neighborhoods A := π−1

i (U) and B := π−1
i (V ), where πi : [0, 1]I → [0, 1] is the i-th projection. Then A ×B

is a neighborhood of the point (u, v) in [0, 1]I × [0, 1]I such that for every (a, b) ∈ A × B we have ai > bi. 
Hence, (a, b) /∈ γ.

Claim 2. The restriction of γ on Y = cls (X) is a linear order.

Indeed, let u, v be distinct elements of Y . Then there exists i ∈ I such that ui �= vi. Say,

ui = fi(u) < vi = fi(v).

Choose a real number c such that fi(u) < c < fi(v) and define two open neighborhoods

u ∈ A := {y ∈ Y : yi < c} v ∈ B := {y ∈ Y : c < yi}

of u and v in Y . Since X is dense in Y and A, B are open subsets in Y , we have A ⊂ cls (A ∩ X) and 
B ⊂ cls (B ∩X). For every a ∈ A ∩X, b ∈ B ∩X we obviously have

fi(a) < c < fi(b).

Then necessarily, a < b because the order on X is linear and fi is increasing. Since such a approximates 
u ∈ A and b approximates v ∈ B we obtain by Claim 1 that u ≤ v.

Claim 3. Every restricted projection Fi : Y → [0, 1] is a continuous (regarding the product topology) 
γ-increasing function and Fi|X = fi ∀i ∈ I.

Fi is increasing by definition of γ. The continuity is trivial by definition of the product topology. Finally, 
fi is a restriction of Fi on X by the definition of diagonal map.

Now it is enough to show the last claim.

Claim 4. The product topology τ on Y coincides with the interval topology τγ.

This follows from the second part of Corollary 3.3 taking into account that the linear order of Y is closed 
in Y × Y regarding the product topology (use Claim 1 and the closedness of Y in [0, 1]I). �
4. Functions of bounded variation on an ordered set

In the following definition we consider a natural generalization of the classical concept (well known for 
the interval X = [a, b]) of bounded variation.

Definition 4.1. Let (X, ≤) be a linearly ordered set. We say that a bounded real valued function f : X → R

has variation not greater than r if

n−1∑

i=0
|f(xi+1) − f(xi)| ≤ r (4.1)

for every choice of x0 ≤ x1 ≤ · · · ≤ xn in X. The least upper bound of all such possible sums is the variation
of f . Notation: Υ(f). If Υ(f) ≤ r then we write f ∈ BVr(X). If f(X) ⊂ [c, d] for some c ≤ d then we write 
also f ∈ BVr(X, [c, d]). One more notation: BV (X) := ∪r>0BVr(X).



M. Megrelishvili / Topology and its Applications 217 (2017) 20–30 27
Lemma 4.2. Let (X, ≤) be a linearly ordered set.

(1) BVr(X, [c, d]) is a pointwise closed (hence, compact) subset of [c, d]X .
(2) M+(X, [c, d]) is a closed subset of BVr(X, [c, d]) for every r ≥ d − c.
(3) (Analog of Jordan’s decomposition) Every function f ∈ BV (X) is a difference f = u − v of two order 

preserving bounded functions u, v : X → R.

Proof. (1) is clear using the fact that the linear order of [c, d] is closed.
(2) Observe that Υ(f) ≤ d − c for every increasing function f : X → [c, d].
(3) If in Definition 4.1 we allow only the chains {xi}ni=1 with xn ≤ c for some given c ∈ X then we obtain 

a variation on the subset {x ∈ X : x ≤ c} ⊂ X. Notation: Υc(f). As in the classical case (as, for example, in 
[25]) it is easy to see that the functions u(x) := Υx(f) and v(x) := u(x) − f(x) on X are increasing. These 
functions are bounded because |Υx(f)| ≤ Υ(f) and f is bounded. �
Lemma 4.3. F(X) is a vector space over R with respect to the natural operations.

Proof. Clearly, f ∈ F(X) implies that cf ∈ F(X) for every c ∈ R. Let f1, f2 ∈ F(X). We have to show that 
f1 + f2 ∈ F(X). Let ∅ �= A ⊂ X and ε > 0. Since f1 ∈ F(X) there exists an open subset O1 ⊂ X such 
that A ∩O1 �= ∅ and f1(A ∩O1) is ε2 -small. Now since f2 ∈ F(X), for A ∩O1 we can choose an open subset 
O2 ⊂ X such that (A ∩O1) ∩O2 is nonempty and f2(A ∩O1 ∩O2) is ε2 -small. Then (f1 +f2)(A ∩ (O1 ∩O2))
is ε-small. �
Corollary 4.4. BV (X) ⊂ F(X) for any LOTS X.

Proof. Any f ∈ BV (X) is a difference of two increasing functions (Lemma 4.2.3). Hence we can combine 
Theorem 3.5 and Lemma 4.3. �
Theorem 4.5. For every linearly ordered set X the family of functions BVr(X, [c, d]) is tame. In particular, 
M+(X, [c, d]) is also tame.

Proof. Assuming the contrary let fn : X → R be an independent sequence in BVr(X, [c, d]). By Lemma 4.2.3, 
for every n we have fn = un − vn, where un(x) := Υx(fn) and vn(x) := un(x) − fn(x) are increasing 
functions on X. Moreover, the family {un, vn}n∈N remains bounded because |Υx(fn)| ≤ Υ(fn) ≤ r for every 
x ∈ X, n ∈ N and fn is bounded. Apply Representation Theorem 3.6. Then we conclude that there exist 
two bounded sequences tn : Y → R and sn : Y → R of continuous increasing functions on a compact LOTS 
Y which extend un and vn. Consider Fn := tn − sn. First of all note that for sufficiently big k ∈ R we have 
Fn ∈ BVk(Y, [−k, k]) simultaneously for every n ∈ N.

Since Fn|X = fn we clearly obtain that the sequence Fn : Y → R is independent, too. On the other 
hand we can show that cls (Γ) ⊂ F(Y ), where Γ = {Fn}n∈N ⊂ R

Y . Indeed, by Corollary 4.4 we know that 
BVk(Y, [−k, k]) ⊂ F(Y ). Using Lemma 4.2.1 we get

cls (Γ) ⊂ cls (BVk(Y, [−k, k])) = BVk(Y, [−k, k]) ⊂ F(Y ).

Then Γ is a tame family by Theorem 2.3. This contradiction completes the proof. �
5. Helly’s sequential compactness type theorems

Theorem 5.1. Let (X, ≤) be a linearly ordered set. Then BVr(X, [c, d]) is sequentially compact in the point-
wise topology.
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Proof. First note that using Lemma 4.2.3 one may reduce the proof to the case where fn : X → R is 
a bounded sequence in M+(X). Now, by Representation Theorem 3.6 we have a bounded sequence of 
continuous increasing functions Fn : Y → R on a compact LOTS Y , where Fn|X = fn. By Theorem 4.5 the 
sequence Fn does not contain an independent subsequence. Hence, by Theorem 2.3 there exists a convergent 
subsequence Fnk

. Since the convergence is pointwise and X is a subset of Y we obtain that the corresponding 
sequence of restrictions fnk

:= Fnk
|X is pointwise convergent on X. �

The following corollary can be derived also by results of [8]. Moreover, Theorem 5.1 can be proved by [8, 
Theorem 7] using Lemma 4.2.3.

Corollary 5.2. Let (X, ≤) be a linearly ordered set. Then the compact space M+(X, [c, d]) of all order pre-
serving maps is sequentially compact.

Using Nachbin’s Lemma 3.4 we give now in Theorem 5.3 a further generalization replacing [c, d] in 
Theorem 5.1 by partially ordered compact metrizable spaces. This gives a partial generalization of [8, 
Theorem 7]. Some restriction (e.g., the metrizability) on a compact ordered space Y is really essential as it 
follows from [8, Theorem 9].

Theorem 5.3. Let (X, ≤) be a linearly ordered set and (Y, ≤) be a compact metrizable partially ordered space. 
Then the compact space M+(X, Y ) of all order preserving maps is sequentially compact.

Proof. First of all note that M+(X, Y ) is compact being a closed subset of Y X . Here we have to use 
the assumption that the given order on Y is closed (Definition 3.1). M+(X, [0, 1]) is sequentially compact 
by Theorem 5.1. Therefore, its countable power M+(X, [0, 1])N is also sequentially compact. Now observe 
that M+(X, Y ) is topologically embedded (as a closed subset) into M+(X, [0, 1])N. Indeed, by Nachbin’s 
Lemma 3.4 continuous increasing maps Y → [0, 1] separate the points. Since Y is a compact metrizable 
space one may choose a countable family hn of increasing continuous maps which separate the points of Y . 
For every f ∈ M+(X, Y ) define the function

u(f) : N → M+(X, [0, 1]), n �→ hn ◦ f.

This assignment defines a natural topological embedding of compact Hausdorff spaces (hence, this embed-
ding is closed)

u : M+(X,Y ) ↪→ M+(X, [0, 1])N, u �→ u(f) = (hn ◦ f)n∈N. �
Another Helly type theorem can be obtained for functions of bounded variation with values into a compact 

metric space.

Definition 5.4. Let (Y, d) be a metric space and f : (X, ≤) → (Y, d) be a bounded function. Replacing in 
Definition 4.1 the Formula 4.1 by

n−1∑

i=0
d(f(xi+1), f(xi)) ≤ r (5.1)

We obtain the definition of f ∈ BVr(X, Y ).

In the particular case of (X, ≤) = [a, b] Definition 5.4 and Theorem 5.5 are well known [1,4].
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Theorem 5.5. Let (X, ≤) be a linearly ordered set and (Y, d) be a compact metric space. Then the compact 
space BVr(X, Y ) is sequentially compact in the pointwise topology.

Proof. Since (Y, d) is a compact metric space there exist countably many Lipshitz 1 functions hn : (Y, d) →
[0, 1] which separate the points of Y . Indeed, take a countable dense subset {yn : n ∈ N} in Y and define 
hn(x) := d(yn, x). Then hn ◦ f ∈ BVr(X, [0, 1]) for every f ∈ BVr(X, Y ). The rest is similar to the proof of 
Theorem 5.3. �

For a direct proof of Helly’s Theorem 1.1 see, for example, [25]. An elegant argument was presented by 
Rosenthal in [27]. The set M+([0, 1], [0, 1]) is a compact subset in the space B1[0, 1] of Baire 1 functions. 
Hence it is sequentially compact because the compactness and sequential compactness are the same for 
subsets B1(X) for any Polish X [27].

Another known classical proof is based on the first countability of the Helly’s compact space [28]. Such 
a proof is impossible in general for Corollary 5.2. Indeed, the cardinality card(M+(X, [c, d])) ≥ card(X). 
When card(X) > 2ℵ0 the corresponding M+(X, [c, d]) is not first countable because the cardinality of a first 
countable compact Hausdorff space is not greater than 2ℵ0 . However as it was pointed out by Eli Glasner, 
using a version of Representation Theorem 3.6, the proof of Corollary 5.2 can be reduced to the case when 
(X, ≤) is metrizable and compact in its interval topology. In this case the principal scheme of the proof 
in [28, Exercise 107] (as well as the scheme of Rosenthal’s argument) seems to be valid with some easy 
adaptations.

Remarks 5.6. As we already mentioned Theorems 5.1 and 5.3 cannot be generalized to the assertion with 
non-separable target spaces. Furthermore, as it was remarked by the referee, a straightforward generalization 
of Theorem 5.1 would be obtained if we replace [c, d] by a sequentially compact linearly ordered abelian 
group. The situation with Theorem 5.5 is similar. In contrast, one may further generalize Theorem 5.3
and obtain the following result: Let X be a linearly ordered set and Y be a sequentially compact partially 
ordered space with hereditary density < s then M+(X, Y ) is sequentially compact. This assertion can be 
proved similarly to [8, Theorem 7]. It is a generalization of Theorem 5.3 and also a full generalization of [8, 
Theorem 7].
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